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Abstract: Reaction of chiral allylic and dienylic cyclic carbonates with various nucleophiles
in the presence of (PPh,) Pd as a catalyst afforded a-, y-, or e-substituted products with
high regio-, (E)-stereo-, and diastereoselectivity depending on nucleophiles.

Reaction of allylic compounds with various nucleophiles catalyzed by palladium complexes via
n-allylpalladium complexes has been well established as an important synthetic method for C-C, C-N,
C-O, and C-S bond formations in inter- and intramolecular reactions.' Acyclic allylic carbonates were
found to be valuable substrates for palladium-catalyzed nucleophilic substitution by Tsuji.? Recently, we
have reported™ neutral alkylation of soft carbon nucleophiles with chiral allylic cyclic carbonates catalyzed
by (PPh,),Pd.>® We have explored palladium-catalyzed nucleophilic substitution of allylic and dienylic
cyclic carbonates with carbon, oxygen, and sulfur nucleophiles, which resulted in high regio- and
diastereoselective substitution depending on nucleophiles.

The results of the reactions of allylic and dienylic cyclic carbonates with nucleophiles are
summarized in Table 1. The optically active cyclic carbonate 1* reacted with PhOH in the presence of Et,N
and sodium benzenesulfinate in refluxing THF for 1 h in the presence of (PPhy,Pd (5 mol%) to give the
(E)-allylic alcohols 4a and 4b, respectively, as a sole product (entries 1 and 2).* However, sodium
thiophenoxide attacked 'proximal’ to oxygen atom with inversion to afford the threo-B-hydroxy sulfide s¢
(entry 3) contrasting the regioselectivity associated with palladium-catalyzed S-alkylation of acyclic
carbonates.” Presumably, in this particular system the substitution was proceeded by internal attack of
thiophenoxide to carbon via n-allylpalladium complex with net inversion.* In our control experiment, only
deprotected diol and the starting material 1 were isolated from the reaction of 1 with NaSPh (2 equiv) in
THEF at reflux for 1 h without Pd(0)-catalyst. Thus, the possibie non-palladium substitution reaction was
climinated. It is also notable that the problem of catalytic poisoning with thiophenoxide was avoided in this
system.® For the (E)-dienylic cyclic carbonate 2'°, dimethyl malonate under neutral conditions in the
presence of (PPh,),Pd afforded y-alkylated product 6° as a major product with high diastereoselectivity
(~ 98%) along with a minor €-alkylated compound in the ratio of 6 : 1 (entry 4). This is in contrast to the
g-alkylation with dienylic acetate and sodium malonate reported by Backvall '+ *and Trost." Pd(0)-catalyzed
substitution reaction of (E)-dienylic cyclic carbonate 2 with PhOH in the presence of Et,;N and NaSO,Ph
provided complete regioselective introduction of these nucleophiles to €-position to afford the (E, E)-
dienylic alcohots 7a and 7b (entries 5 and 6). The (E, E)-dienylic ester 3a with sodium thiophenoxide
yielded 8° (entry 7). Finally, reaction of 3b with dimethyl malonate afforded the adduct 9°, which was
introduced a quaternary center at y-position with high diastereoselectivity (~ 92%) (entry 8). The typical
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procedure is as follows. To a stirred solution of the allylic cyclic carbonate 1 (258 mg, 1.10 mmol) in dry
THF (4 mL) under nitrogen atmosphere was added sodium benzenesulfinate (388 mg, 2.20 mmol) and
(PPh,) Pd (63 mg, S mol%). After stirring for 10 min at reflux, the reaction mixture was cooled and THF
was evaporated. The crude product was purified by SiO, column chromatography (EtOAc/hexanes 1: 1,
R, = 0.19) to afford 4b (290 mg, 80%).

Table 1. Regioselective Palladium-Mediated Substitution of Allylic and Dienylic Cyclic Carbonates.

Entry Substrate Nucleophile* Product Yield(%)® [a)f in CHCl;
9, 4
1 BnO - PhO (2) BnO ~N A X -172
N H/Et;N NN\ 79 (c 0.64)
oA 5 4a X =OPh 203
+<.
) 11 NaSO,Ph(2) 4bofl=SOzPh 80 (¢ 074
3 NaSPh(2)  BnO._A= 471
1 ( ) n N 74 (C 1'50)
5 SPh
4 BnoO (:)) N >
no AR CH,(COMe)y(1) BnO A 85
o E 0 CH(CO,Me),
6y-:e-=6:1
OH 1.74
- +1.
s ) PROH2)ELNQ) BO A X 8 (1035
7a X = OPh
+9.52
6 2 NaSO,Ph(2) 7b X = SO,Ph 72 (c 0.21)
0 o
7 BnO 1 =-C0Me NasPh(2)  BrO AL AN COMe 77 (10.27
1 8SPh
3‘ R] = H OH
8 3b Ry =Me  CHy(COMen() BrO AP\ COMe 89 260
R; CH(CO,Me), )
9¢ R, =Me

"With (PPh,) Pd (5 mol %), THF, reflux, 1 h. The molar equivalents are given in parentheses. *The yiclds are isolated yiclds.
“The diastercoselection has been found to be nearly perfect (>99%) judged by "H NMR spectrum and GC-MS analysis of the
acetate of 8. The GLC analysis was performed using Hewlett Packard 5880 GC system (column: Hewlett Packard SE-54, 0.2
mm x 16 mm, oven temp.: 1505300 °C, carier gas: N ,, 1.0 mL /min, injection temperature: 280 °C). The retention time of
the acetate of § was 7.95 min. *The diastereoselectivity of 9 was determined ~ 92 % by 'H NMR analysis with Eu(hfc) , and
capillary GLC analysis of the acetate of 9.

To establish the relative stereochemistry of the newly introduced C-S bonds in § and 8, the
B-hydroxy sulfides § and 8 were converted'* to the corresponding vinyl rans-epoxides 10° and 11°¢,
respectively, by treating with trimethyloxonium tetrafluoroborate followed by 10% aquous NaOH. The
trans-epoxides were inferred from 'H NMR (200 MHz) coupling constants of the two vicinal protons of
the epoxides.'® Alternatively, the epoxide 10 was returned to the zhreo compound § by the reaction'® with
PhSH (Scheme 1).
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[a]**p = 40.5 (c 0.19, CHCl,)

Reagents: (a) Me,OBF, (1 equiv), CH,Cl,, rt, 2 h (b) 10% NaOH (aq.), rt, 30 min (c) PhSH,
Ey,N, MeOH, 11, 1 h.

Scheme 1.

On the other hand, to deduce the relative stereochemistry of C-C bond in 6, the compound 6 was
converted to the carbonate followed by cyclopropanation'” to afford 12€ of which structure was confirmed
from the coupling constant (J = 7.0 Hz, trans coupling) of '"H NMR (200 MHz) (Scheme 2).

J= 7T0Hz
H H

% =
-~

BnO A~ Lb» BnO N u
CH(CO,Me), Z Eco,Me
Me

6 12

{a)*%; = +183 (¢ 2.4, CHCly)
Reagents: (a) EtOCOCI, DMAP, pyridine, rt, 1 h (97%) (b) Pd,(dba); CHCl,, dppe, THF, 11, 6 h
(61%).

Q0

Scheme 2

In summary, using allylic and dienylic cyclic carbonates as substrates, Pd(0)-catalyzed reaction
with nucleophiles afforded a-, y-, or &- substituted products with high regio- and diastereoselectivity.
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